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We have developed an analytical algorithm analogous to the Wulff construction for calculating the spatial
evolution of growing two-dimensinal~2D! domains as a function of time for arbitrary starting shapes. Apply-
ing the method to polarization domain growth in surface-stabilized ferroelectric liquid crystals, we can derive
the full 2D shapes of polarization domains with curved walls from the directional variation of the velocity of
planar walls as measured by computer simulations in only 1D. It is shown that the domain shape is determined
in the present model by the anisotropic nematic elastic properties of the material.@S1063-651X~96!07606-4#

PACS number~s!: 61.30.Cz, 83.70.Jr, 77.80.Fm

I. INTRODUCTION

The shapes of domains growing in condensed systems can
tell us much about the underlying physics of the phases in-
volved @1#. Examples include crystallization from solute or
melt, directional solidification, and the growth of one liquid
crystal phase or orientation in another. Domain growth is
typically driven by temperature or density gradients, changes
in pressure, or external fields, and the observed morphology
may be a function of kinetic factors or of such static proper-
ties as surface energy anisotropy, surface tension, and bulk
elasticity.

Such domains are typically multidimensional
(d-dimensional! objects bounded by localized (d21)-
dimensional interfaces. In general, modeling of the domain
shape requires calculation or simulation of the interface sur-
face and profile ind dimensions. This paper deals with con-
ditions under which the understanding and modeling of do-
main shape can be greatly simplified. Specifically we
consider the situation in which~a! the interface thickness is
small in comparison to its radius of curvature, and~b! the
local velocity of interface advance,vn(n̂)n̂, dependsonly on
the instantaneous orientation of the local interface unit nor-
mal, n̂, i.e., is independent of its curvature, history, and the
location of other interface elements. Condition~b! implies
that vn(n̂)n̂ would be the steady state velocity of a planar
interface traveling in the directionn̂. We show that the do-
main shape can be obtained fromvn(n̂) in a way analogous
to the Wulff construction@2#, which relates equilibrium crys-
tal shape to the dependence of the interfacial tensiong(n̂) on
surface orientation,n̂. Since the calculation ofvn(n̂)n̂ for a
planar interface is a one-dimensional problem, the modeling
of domain shape is reduced to the one-dimensional~1D! so-
lution for the propagation of a planar interface vs orientation
n̂.

We apply this technique to calculate the shape evolution
of polarization domains in surface-stabilized ferroelectric liq-
uid crystal ~SSFLC! cells driven by applied electric fields.
SSFLC cells typically contain chiral smectic-C ~Sm-C) liq-
uid crystal, which exhibits a spontaneous polarization normal
to the molecular tilt plane@3#. The smectic layers are ori-
ented approximately perpendicular to the conductive bound-
ing plates, a geometry which forms the basis of fast electro-
optic devices @4#. In general, the optical response of

SSFLC’s to applied electric fields is a complex function of
the cell thickness, the voltage, and the material parameters of
the liquid crystal. In particular, in cells with the chevron
layer structure@5# sketched in Fig. 1~a!, the direction of the
ferroelectric polarization at the chevron interface can be
switched between UP and DOWN by relatively weak fields
(E; a few V/mm!. This local reorientation couples elasti-
cally to the dipoles in the rest of the cell, as shown in Fig.
1~b! @6#. Since the ferroelectric dipoles are rigidly connected
to the molecular orientation, polarization reversal causes
large changes in the optical transmission when the cells are
suitably oriented between crossed polarizers@7#.

The electro-optic response of chevron SSFLC’s is mainly
determined by the polarization switching at the chevron in-
terface. This process typically involves the nucleation and
subsequent growth of many individual, switched domains of
high optical contrast@8,9#. In the two-dimensional~2D! view
afforded by the polarizing microscope, these domains exhibit
a variety of interesting and complicated morphologies, rang-
ing from polygonal in low applied fields to almost elliptical
in high fields. Since the dynamics of domain growth~which
we modeled in our previous paper@10#! directly determines
the electro-optic preformance of SSFLC’s, there are clear
practical incentives for studying this phenomenon.

This paper is arranged as follows. After reviewing the
basic principles of the Wulff construction in the following
section, we will describe our generalized method for calcu-
lating dynamic domain shapes and apply it to the specific
case of SSFLC’s. We conclude by addressing the feasibility
of inferring physical parameters from observed domain
shapes.

II. MOTIVATION

The Wulff construction is an appealingly simple way of
deriving theequilibriumshapes of crystals when the angular
dependence of the surface energy anisotropyg(b) is known,
with b being the angle betweenn, the unit normal to the
domain wall, and they axis, as shown in Fig. 2. The crystal
shape corresponds to the minimal area enclosed by the set of
lines drawn through each point of the energy surface, such
that each line is oriented normal to the ‘‘radial’’ vector join-
ing the center of theg(b) plot to that point. An extensive
review and general proof of the validity of the Wulff con-
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struction has been given by Herring@11#.
In this paper we have developed an analysis comparable

to the Wulff construction that allows us to determinenon-
equilibrium steady-state shapes of domains or crystals when
the domain wall velocity as a function of surface orientation
vn(b) is known. Our results confirm an observation, also
attributed to Wulff, which is that fast-growing faces are soon
eliminated from any crystal, while slow-growing faces per-
sist and eventually dominate the crystal shape. While the
Wulff construction gives the final~equilibrium! shape of
crystals, our analytic recipe, which basically involves ad-
vancing each~infinitesimal! segment of the domain wall by
an amount proportional to the speed of a 1D wall with the
same orientation, enables us to compute the~nonequilibrium!
evolution of domains of arbitrary starting shape as a function
of time. We assume that a single kinetic quantity, such as the
velocity vn(b), can completely describe the evolution of the
domain shape.

Although the analysis is quite general, our specific inter-

est is in explaining the shape of polarization domains in
SSFLC’s @12#. Recent experimental observations have
shown that the growth at measurable times is self-similar,
implying that the steady-state velocity along a given direc-
tion is constant in time@9#.

For the growth model used in this paper, we show that in
the simplest mathematical description of SSFLC switching
the angular dependence of growth velocityvn(b) is deter-
mined primarily by the nematic elastic anisotropy of the liq-
uid crystal. The equilibrium shape of the domain therefore
closely depends on the inherent properties of the material. In
our simple model, we consider the applied field as the only
driving force for domain growth. We find that the field only
scales the magnitude of the velocityvn(b), whereas we have
observed in experiments that changing the field may also
lead to fundamental changes in the symmetry of the observed
domain shapes. We also note that we are considering purely
deterministic systems, where thermal fluctuation effects on
the growth morphology can be ignored. The formalism is
presented in the following section.

III. CALCULATION OF THE SHAPES
OF GROWING DOMAINS

The following general algorithm for calculating the~non-
equilibrium! steady-state shape of switching domains uses
the normal velocity profilevn(b) of the domain boundaries,
assumed to be independent of timet. This is consistent with
the experimental observation that the mean dimension of
switching domains in chevron SSFLC cells increases linearly
with time @9#. Under conditions of stable growth, therefore,
the domain wall velocityv(u) is independent ofr along any
given direction.u is the angle between the radial vectorr
and they axis, as shown in Fig. 2.

We start by considering an arbitrary point (y,z) on the
domain boundary. The radial vectorr connecting the origin
with this point can be decomposed into components normal
and tangential to the local domain boundary with respective
lengthsLn andLt . We see from Fig. 2 thatLn andLt can be
expressed in terms ofy andz as

FIG. 1. ~a! Geometry of chevron SSFLC cell. The smectic lay-
ers are tilted an angle6d from the cell normal, forming a chevron-
like structure. A generic domain~in black! is shown growing along
the planar chevron interface.~b! Polarization domain switching at
the chevron interface. A DOWN domain is shown growing in an
UP environment, the arrows representing the polarization fieldP.
This is a transverse view of the cell shown in~a!, with the chevron
domain boundaries indicated by the filled circles (d).

FIG. 2. Geometry of domain shape calculations. The curved
domain boundary advances with velocityv and the normal compo-
nent is given byvn .
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Ln5ycosb1zsinb, ~1a!

Lt5ysinb2zcosb. ~1b!

The growth velocities in the normal and tangential directions
are given by

vn~b!5
dLn
dt

, ~2a!

v t~b!5
dLt
dt

. ~2b!

Throughout this paper, we have assumed that the normal
growth velocity,vn(b), is given. The tangential component
may conveniently be expressed in terms of the normal veloc-
ity as

v t~b!52
dvn~b!

db
. ~3!

It is clear from the preceding equations that if the normal
growth velocityvn(b) is independent of timet, then so are
the tangential componentv t(b) and the total velocity
v(b). The domain wall positions can be derived fromLn and
Lt , which are found by a trivial integration to be

Ln~b,t !5vn~b!t1Ln
0~b!, ~4a!

Lt~b,t !52
dvn~b!

db
t1Lt

0~b!, ~4b!

whereLn
0 andLt

0 are the initial values ofLn andLt at t50.
The domain wall position may alternatively be written in
terms of the polar coordinates (r ,u) in the form

r5A@vn~b!t1Ln
0~b!#21S 2

dvn~b!

db
t1Lt

0~b! D 2,
~5a!

tan~b2u!5

2
dvn~b!

db
t1Lt

0~b!

vn~b!t1Ln
0~b!

. ~5b!

It is evident from the equations that the domain shape at
short times depends strongly on the initial shape of the do-
main. At long times, the domain growth becomes self-similar
and an equilibrium shape is approached. In the limitt→`,
the equations reduce to

r5Avn~b!21S dvn~b!

db D 2t, ~6a!

tan~b2u!52
1

vn~b!

dvn~b!

db
. ~6b!

In this limit the domain shape is determined only by the
normal velocity profilevn(b), irrespective of the initial
shape att50. Under conditions of similar growth, the do-

main shape does not change with time, and the domain wall
velocity v(u)5r (u,t)/t is independent ofr along any given
direction.

IV. FERROELECTRIC LIQUID CRYSTALS

In switching domain growth experiments, one would like
to relate the observed normal velocityvn(b) to material
properties of the system, as well as to the external field. In
the case of field-driven domain growth in ferroelectric liquid
crystals, we find that the Frank elastic constants play an im-
portant role in determining the growth velocities in different
directions, and can be directly related to anisotropies in the
domain shape. As a typical example, consider an SSFLC cell
in an external electric field. The equation of motion describ-
ing the dynamics of director reorientation in chevron SSFLC
cells can be written as@10#

h
]f

]t
5~KBScos

2b1KTsin
2b!

]2f

]y82
2PEsinfcosd

2A
]

]b
cosx, ~7!

wheref is the azimuthal angle of the director,KBS andKT
are the Frank elastic constants for distortions of the director
field, respectively, within and normal to the smectic layers,
d is the smectic layer tilt angle,E is the applied electric field,
andP the spontaneous polarization. The last term describes
orientational binding at the chevron interface,x being the
angle subtended between the directors immediately above
and below the chevron interface, andA a material dependent
parameter. The inclusion of a viscosityh implies a dissipa-
tive force damping azimuthal motion of the director. This
formulation allows us to solve the 2D equation of motion for
the special case of a 1D domain wall propagating along an
arbitrary directiony8 in the y-z plane.

FIG. 3. Normal growth velocity profilevn(b) with the ratio of
elastic constantsKT /KBS51/10. The solid symbols represent the
velocity obtained numerically. The curve is a fit of the form
vn(b)}@KTsin

2(b)1KBScos
2(b)#1/2, and is clearly in good agree-

ment with the numerical result.
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Comparing Eq.~7! with the standard sine-Gordon diffu-
sion equation, and initially neglecting the chevron term for
qualitative purposes, we can derive an effective orientational
diffusion coefficientDeff for very smallf,

Deff}~KBScos
2b1KTsin

2b!/h. ~8!

Alternatively, we can writeDeff;vn
2t, with vn defined as

before, andt;h/(PE) the characteristic time derived from
Eq. ~7!. Typically, t has the order of 1 ms in our simulations.
Substituting forDeff in Eq. ~8!, we may obtain the depen-
dence of the normal growth velocity on the external field, the
elastic constants, the viscosity, as well as the polarization

vn}
APE

h
AKBScos

2b1KTsin
2b. ~9!

This result implies that the velocityvn}AE, consistent with
earlier analytical and computational results@13#. We have
performed numerical simulations in order to find the relation
between the normal growth velocity and the related physical
parameters, with the explicit inclusion of the chevron term.
In this case, it is found that the normal velocityvn(b) has
the form

vn~b!}
PE

h
AKBScos

2b1KTsin
2b, ~10!

i.e.,vn(b) is found to be linear inE rather than proportional
to E1/2. This observed change of power law dependence of
the growth velocityvn(b) on the fieldE must be due to the
chevron term. The angular dependence of the normal veloc-
ity vn(b) arises in our model from the anisotropic properties
of the Frank elastic constants, and does not depend on the
chevron term. Velocity profilesvn(b) calculated from Eq.
~7! are shown in Fig. 3. The calculated velocity profiles
closely match the shape predicted by Eq.~10!.

V. RESULTS

We have modeled the domain shape evolution of
SSFLC’s in the presence of an electric field using the method
described above. The system is well-behaved, in the sense
that the asymptotic form of the growing domain does not
depend on its initial shape. For any given set of physical
parameters, both polygonal and elliptical domain nuclei with
either smooth or rough boundaries all evolve within a few
characteristic timest to the same smooth, elongated form.

FIG. 4. ~a! Computed angular dependence of
the normal growth velocityvn(b) for a typical
SSFLC cell inmm/ms. ~b!–~d! Domain shape
evolution for different nuclei: ~b! circle, ~c!
square, and~d! circle with bumps. The early time
evolution is depicted on the left at time intervals
of 100ms, while the long time growth is shown
on the right using coarser time steps of 1 ms.
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Assigning different values to the elastic constantsKT and
KBS corresponding to the twist and bend-splay distortions of
P, in accord with what is known of SC phases, is found to be
an essential condition for generating anisotropic growth in
the y-z plane. In addition, our simulations are the first to
produce partial faceting similar to what is observed experi-
mentally.

The evolution of some domain shapes computed by solv-
ing Eq. ~5! starting from different initial configurations but
with the same normal velocity profilevn(b) are shown in
Fig. 4. Figure 4~a! shows the velocity profilevn(b) com-
puted by solving Eq.~7!, with KT/KBS51/10. It can beseen
from Fig. 4~a! that the profile of the velocity is smooth ex-
cept for two singularities located atb5p/2 and 3p/2. The
Wulff construction would predict that the cusps invn(b)
should produce the facets of the domain wall. Figure 4~b!
shows the domain shape at different times when the initial
nucleus is circular. It is found at early times that the local
wall orientationb along any radial directionu varies with
time, implying that the domain growth is not initially self-
similar. At long times, however, the equilibrium shape deter-
mined by the velocity profilevn(b) is approached. The equi-
librium domain shape has facets corresponding to the cusps
of the velocity profile. Figure 4~c! shows the evolution of an
initially square nucleus. At first we find that those parts of
the domain boundary with orientations close to the cusps in
vn(b) evolve most rapidly, while keeping the other parts
unchanged. Although the sharp corners are rounded rela-
tively slowly, the final shape is still the same as in Fig. 4~b!.
We also watched the evolution of a circle with some pointed
bumps on it, shown in Fig. 4~d!. Although the absolute
height of the bumps does not change with time, the bumps in
this example become negligibly small in comparison with
the domain size as time goes on.

Faceting in this model is a combined consequence of the
elastic anisotropy and the chevron potential. The domain
wall velocity is smaller along the layer normalẑ than along
the layers themselves becauseKT,KBS, causing a cusp in
the velocity diagram atb5p/2 that is in turn responsible for
faceting. The chevron binding term introduces an energy bar-
rier that further slows down wall motion, deepening the
cusps invn(b).

Finally, we also performed simulations for the arbitrary
velocity profile shown in Fig. 5~a!. This angular dependence
of the growth velocityvn(b) does not arise from our SSFLC
model. Since there are four cusps in the velocity profile, we
would predict that the equilibrium shape of the domain is a
rectangle. The evolution of domain shape with time for a
circular nucleus and for a circular nucleus with some bumps
on it are displayed, respectively, in Figs. 5~b! and 5~c!. We
see that within a very short time, the equilibrium form, a
rectangle, is indeed reached. In particular, we note in Fig.
5~c! that when the nucleus begins to grow outward, the
bumps are first expanded into facets, which become wider
and wider until they form the sides of the rectangle.

VI. DISCUSSION

In our simulations we have considered the growth of a
single domain from an isolated nucleus. By introducing an-
isotropy in the elastic constants, domain growth is seen to

occur more rapidly along the layers than perpendicular to
them. Including a chevron binding potential leads to a flat-
tening of the sides of the domain. However, there is evi-
dently nothing in the present model to cause further faceting
or asymmetric growth in the layer direction.

Experimentally, we observed several hitherto unexplained
variations in SSFLC domain shape, such as the transitions
from rounded to faceted domain boundaries, and from asym-
metric pentagonal~‘‘boat’’ ! shapes to elongated hexagons,
both dependent on the applied field strength. This implies
that the angular dependence of normal growth velocity
vn(b) is determined not only by the anisotropic elastic

FIG. 5. Domain growth for an arbitrary velocity profile.~a!
Growth velocity vn(b) in mm/ms; ~b! growth from a circular
nucleus;~c! growth from a circular nucleus with bumps on it. The
evolution in each frame starts from the same initial domain shape at
t50. Successive vertical frames show the evolution over different
time scales. The ‘‘swallow tails’’ are typical artifacts of these cal-
culations: the actual domain shapes for selected times are empha-
sized with thicker lines.
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properties of the material, but also by the external field. Our
present growth model does not account for these phenomena
and it is thought that flow effects may need to be included
@9#.

The Wulff construction is a very simple way of determin-
ing the equilibrium shapes of crystals using the anisotropic
surface tension. This is especially true for a crystal, whose
shape turns out to be rigorously polyhedral due to its rigidity.
Thus the smooth angular dependence of surface tension
g(b) on outnormal angleb effectively reduces to an array of
discrete points, i.e., the cusped minima ofg(b) suffice to
define the domain shape. In this case the Wulff construction
is more effective and more precise than the present method
used here. However, if we expect to consider the equilibrium
shape of partially ordered materials, such as liquid crystals or
a hexatic phase in a melting transition, where the dependence
of surface tension or elastic coefficients on the surface nor-
mal is continuous and single-valued, our analytical proce-
dure gives the domain shape in a very straightforward way.

VII. CONCLUSION

In summary, we have developed a generally analytical
method which can be used to evaluate the evolution of do-

main shapes with time. It has been shown that the equilib-
rium shape of the domain is only determined by the normal
growth velocity profilevn(b), no matter what the initial
shape is. A connection between the normal growth velocity
vn(b) and the effective elastic constantK(b) in chevron
SSFLC’s has been established, allowing the equilibrium
shape to be related to the inherent properties of the material.
A systematic comparison of experimental and numerical data
should therefore enable the determination of some important
physical parameters. For example, an inversion of the
present method here should yield the ratio of the Frank elas-
tic constants in different directions. Measurements of thresh-
old fields and switching times may yield an estimate of the
chevron binding energy,A. All of these will be very inter-
esting topics for future study.
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